ERRATA FOR CAROTHERS' REAL ANALYSIS

ANDRES VALLOUD

1. Chapter One: Calculus Review

- Page 12, exercise 31: one can prove actual equality, not just \geq .
- Page 17, exercise 50: the definition of $g(x)$ should be such that $0 \le t \le x$, otherwise $g(x)$ is constant.

2. Chapter Two: Countable and Uncountable Sets

• Page 29, exercise 26: the exercise should ask for distinct ternary, rather than binary, representations. The report from [1] is reproduced below.

[The function] f : $\Delta \rightarrow [0, 1]$ is the Cantor function and $x, y \in \Delta$ with $x < y$. "If $f(x) = f(y)$, show that x has two distinct binary decimal representations" should instead read "show that x has two distinct *ternary* decimal representations." As a counterexample to the stated exercise, consider $x = 1/3$, $y = 2/3$. Then, $x, y \in \Delta$ with $x < y$, and $f(x) = f(y) = 1/2$. Yet, $x = 1/3$ has only one binary decimal representation.

3. Chapter Three: Metrics and Norms

• Page 39, exercise 10: the errata list [1] claims an incorrect bound for part (ii), however this is erroneous as stated. The original report is reproduced below.

The first part of the exercise shows that $d(x,y) = \sum_{n=1}^{\infty} 2^{-n} |x_n - y_n|$ defines a metric on H[∞]. In the second part, we take $x, y \in H^{\infty}$ and $k \in \mathbb{N}$, and let $\mathcal{M}_\mathsf{k} \, = \, \max\{|\mathsf{x}_1-\mathsf{y}_1|,\ldots,|\mathsf{x}_\mathsf{k} - \mathsf{y}_\mathsf{k}|\}.$ We are directed to "show that $2^{-\mathsf{k}}\mathsf{M}_\mathsf{k} \, \leq$ $d(x,y) \le M_k + 2^{-k}$." The upper bound is incorrect; we suggest that it instead reads "2 $^{-k}\mathsf{M_k}\,\leq\,\mathsf{d}(\mathsf{x},\mathsf{y})\,\leq\,\mathsf{M_k} + 2^{-k+1}$." As a counterexample to the stated exercise, take $x = (x_n)$ defined by $x_1 = 0$ and $x_n = 1$ for $n > 1$ and $y = (y_n)$ defined by $y_1 = 0$ and $y_n = -1$ for $n > 1$, and take k = 1. Then, $M_k =$ $\max\{|\mathsf{x}_1-\mathsf{y}_1|\}=0$ and $2^{-\mathsf{k}}=1/2,$ so, according to the stated exercise, we would have $d(x, y) \leq 1/2$. Yet, $d(x, y) = 0 + \sum_{n=2}^{\infty} 2^{-n} |1 - -1| = 1 \nleq 1/2$. Let us show that our suggested upper bound of $\mathcal{M}_\mathsf{k} + 2^{-\mathsf{k}+1}$ is satisfactory: $d(x,y) = \sum_{n=1}^{\infty} 2^{-n} |x_n - y_n| = \sum_{n=1}^{k} 2^{-n} |x_n - y_n| + \sum_{n=k+1}^{\infty} 2^{-n} |x_n - y_n| \leq$ $\sum_{n=1}^{k} 2^{-n} M_{k} + \sum_{n=k+1}^{\infty} 2^{-n+1} = (1 - 2^{-k}) M_{k} + 2^{-k+1} \leq M_{k} + 2^{-k+1}.$

However, note that the counterexample stated has $M_k = 2$ rather than $M_k = 0$ as claimed, because $M_k \ge |x_2 - y_2| = |1 - -1| = 2 > 0$.

Date: January 28, 2022.

2 ANDRÉS VALLOUD

• Page 46, exercise 33: the term $limit$ is undefined for metric spaces so far.

4. Chapter Four: Open And Closed Sets

- 5. Chapter Five: Continuity
- 6. Chapter Six: Connectedness
- 7. Chapter Seven: Completeness
- 8. Chapter Eight: Compactness
	- 9. Chapter Nine: Category
- 10. Chapter Ten: Sequences of Functions
- Page 161, at the end of the historical notes, "Exercises 40" should read "Exercise 40".
	- 11. Chapter Eleven: The Space of Continuous Functions
- Page 181, proof of the Arzela-Ascoli theorem: the backwards direction is incorrect. The relevant notes on this are reproduced here from [1], with a few small corrections.

The proof of one direction of the Arzelà-Ascoli theorem is flawed. We assume that X is a compact metric space and $\mathcal F$ is a closed, uniformly bounded, and equicontinuous subset of $C(X)$, the space of all continuous real-valued functions on X. We wish to show that $\mathcal F$ is compact. The text's approach is to let $({\sf f}^{\sf o}_{{\sf n}})$ be any sequence in $\mathcal{F},$ and show that $({\sf f}^{\sf o}_{{\sf n}})$ contains a subsequence $({\sf f}_{{\sf n}})$ that is uniformly Cauchy. (The text does not use (f_n^o) in its notation; instead, it begins by letting (f_n) refer to an arbitrary sequence from $\mathcal F$, then re-uses (f_n) to refer to a subsequence of the original sequence.) To use this approach, it is necessary to show that for any choice of (f_n^o) , there is a subsequence (f_n) such that for all $\epsilon > 0$, there is an N such that for any $x \in X$ and any $m, n \ge N$, we have $|f_m(x) - f_n(x)| < \epsilon$. Importantly, the subsequence (f_n) must not depend on the value of ϵ . In the text's proof, however, the choice of subsequence depends on the choice of finite δ -net, and the choice of δ depends on ϵ , so the text's choice of subsequence depends on ϵ . So, the text does not really show that (f_n) is uniformly Cauchy.

The following is Professor Frank's approach to showing that any sequence (f_n) from $\mathcal F$ has a uniformly Cauchy subsequence. Since X is compact, it is separable. Let (x_i) be a dense, countable subset of X. Since $(f_k(x_1))$ is a bounded sequence of reals, a subsequence converges; call it $(f_{k(1)}(x_1))$. Since $(f_{k(1)}(x_2))$ is a bounded sequence of reals, a subsequence converges; call it $(f_{k(2)}(x_2))$. Continue in this manner. Now, consider the diagonal sequence $(f_{k_n^{(n)}})$. Observe that $(f_{k_n^{(n)}}(x_j))$ converges for any fixed j. We claim that $(f_{k_n^{(n)}})$ is the desired Cauchy sequence in C(X). Fix $\epsilon > 0$. By the equicontinuity of F, we may choose a $\delta > 0$ such that whenever $x, y \in X$ satisfy $d(x, y) < \delta$, we have $|f(x) - f(y)| < \epsilon/3$. By compactness of X , $X = \bigcup_{i=1}^{m} B_{\delta/2}(y_i)$ for some $y_1, \ldots, y_m \in X$. Since (x_j) is

dense, there are $\mathrm{x}_{\mathrm{j}_{1}},\ldots,\mathrm{x}_{\mathrm{j}_{\mathrm{m}}}$ such that $\mathrm{d}(\mathrm{x}_{\mathrm{j}_{\mathrm{i}}}, \mathrm{y}_{\mathrm{i}}) < \delta/2$ for $\mathrm{i}=1,\ldots,\mathrm{m}$. Now let $x\in X$ and choose $i\in\{1,\ldots,m\}$ such that $x\in B_{\delta/2}(y_i)$. Note that $d(x,x_{j_i})<\delta,$ so $|f_k(x) - f_k(x_{j_i})| < \epsilon/3$ for any k. And, by construction, there exists an N not depending on x such that for all $n, n' \geq N$ and for all $i = 1, ..., m$, we have that $|f_{k_n^{(n)}}(x_{j_i})-f_{k_n^{(n')}}(x_{j_i})|\leq \varepsilon/3$. Thus, for $n, n'\geq N$, we have

$$
|f_{k_n^{(n)}}(x) - f_{k_{n'}^{(n')}}(x)| \leq |f_{k_n^{(n)}}(x) - f_{k_n^{(n)}}(x_{j_i})|
$$

+|f_{k_n^{(n)}}(x_{j_i}) - f_{k_{n'}^{(n')}}(x_{j_i})|
+|f_{k_{n'}^{(n')}}(x_{j_i}) - f_{k_{n'}^{(n')}}(x)|

$$
\leq \epsilon/3 + \epsilon/3 + \epsilon/3
$$

= ϵ .

• Page 182, exercise 57: the sequence (f_n) must also be assumed uniformly bounded. If this is not done, the sequence (f_n) defined by $f_n(x) = n$ is a counterexample. This issue is also referred to in [1].

REFERENCES

[1] Aaron Gabriel Feldman, documenting problems reported by Caltech Professor Rupert Frank. Errata to to Real Analysis by N. L. Carothers. https://aaron.na31.org.