ERRATA FOR CAROTHERS' REAL ANALYSIS

ANDRÉS VALLOUD

1. CHAPTER ONE: CALCULUS REVIEW

- Page 12, exercise 31: one can prove actual equality, not just \geq .
- Page 17, exercise 50: the definition of g(x) should be such that 0 ≤ t ≤ x, otherwise g(x) is constant.

2. Chapter Two: Countable and Uncountable Sets

• Page 29, exercise 26: the exercise should ask for distinct *ternary*, rather than *binary*, representations. The report from [1] is reproduced below.

[The function] $f: \Delta \to [0, 1]$ is the Cantor function and $x, y \in \Delta$ with x < y. "If f(x) = f(y), show that x has two distinct binary decimal representations" should instead read "show that x has two distinct *ternary* decimal representations." As a counterexample to the stated exercise, consider x = 1/3, y = 2/3. Then, $x, y \in \Delta$ with x < y, and f(x) = f(y) = 1/2. Yet, x = 1/3 has only one binary decimal representation.

3. Chapter Three: Metrics and Norms

• Page 39, exercise 10: the errata list [1] claims an incorrect bound for part (ii), however this is erroneous as stated. The original report is reproduced below.

The first part of the exercise shows that $d(x, y) = \sum_{n=1}^{\infty} 2^{-n} |x_n - y_n|$ defines a metric on H^{∞} . In the second part, we take $x, y \in H^{\infty}$ and $k \in \mathbb{N}$, and let $M_k = \max\{|x_1 - y_1|, \dots, |x_k - y_k|\}$. We are directed to "show that $2^{-k}M_k \leq d(x, y) \leq M_k + 2^{-k}$." The upper bound is incorrect; we suggest that it instead reads " $2^{-k}M_k \leq d(x, y) \leq M_k + 2^{-k+1}$." As a counterexample to the stated exercise, take $x = (x_n)$ defined by $x_1 = 0$ and $x_n = 1$ for n > 1 and $y = (y_n)$ defined by $y_1 = 0$ and $y_n = -1$ for n > 1, and take k = 1. Then, $M_k =$ $\max\{|x_1 - y_1|\} = 0$ and $2^{-k} = 1/2$, so, according to the stated exercise, we would have $d(x, y) \leq 1/2$. Yet, $d(x, y) = 0 + \sum_{n=2}^{\infty} 2^{-n} |1 - 1| = 1 \leq 1/2$. Let us show that our suggested upper bound of $M_k + 2^{-k+1}$ is satisfactory: $d(x, y) = \sum_{n=1}^{\infty} 2^{-n} |x_n - y_n| = \sum_{n=1}^{k} 2^{-n} |x_n - y_n| + \sum_{n=k+1}^{\infty} 2^{-n} |x_n - y_n| \leq \sum_{n=1}^{k} 2^{-n} M_k + \sum_{n=k+1}^{\infty} 2^{-n+1} = (1 - 2^{-k}) M_k + 2^{-k+1} \leq M_k + 2^{-k+1}$.

However, note that the counterexample stated has $M_k = 2$ rather than $M_k = 0$ as claimed, because $M_k \ge |x_2 - y_2| = |1 - -1| = 2 > 0$.

Date: January 28, 2022.

ANDRÉS VALLOUD

• Page 46, exercise 33: the term *limit* is undefined for metric spaces so far.

4. CHAPTER FOUR: OPEN AND CLOSED SETS

- 5. Chapter Five: Continuity
- 6. Chapter Six: Connectedness
- 7. CHAPTER SEVEN: COMPLETENESS
- 8. Chapter Eight: Compactness
 - 9. Chapter Nine: Category
- 10. CHAPTER TEN: SEQUENCES OF FUNCTIONS
- Page 161, at the end of the historical notes, "Exercises 40" should read "Exercise 40".
 - 11. CHAPTER ELEVEN: THE SPACE OF CONTINUOUS FUNCTIONS
- Page 181, proof of the Arzelà-Ascoli theorem: the backwards direction is incorrect. The relevant notes on this are reproduced here from [1], with a few small corrections.

The proof of one direction of the Arzelà-Ascoli theorem is flawed. We assume that X is a compact metric space and \mathcal{F} is a closed, uniformly bounded, and equicontinuous subset of C(X), the space of all continuous real-valued functions on X. We wish to show that \mathcal{F} is compact. The text's approach is to let (f_n^o) be any sequence in \mathcal{F} , and show that (f_n^o) contains a subsequence (f_n) that is uniformly Cauchy. (The text does not use (f_n^o) in its notation; instead, it begins by letting (f_n) refer to an arbitrary sequence from \mathcal{F} , then re-uses (f_n) to refer to a subsequence of the original sequence.) To use this approach, it is necessary to show that for any choice of (f_n^o) , there is a subsequence (f_n) such that for all $\epsilon > 0$, there is an N such that for any $x \in X$ and any $m, n \ge N$, we have $|f_m(x) - f_n(x)| < \epsilon$. Importantly, the subsequence (f_n) must not depend on the value of ϵ . In the text's proof, however, the choice of subsequence depends on the choice of finite δ -net, and the choice of δ depends on ϵ , so the text's choice of subsequence depends on ϵ . So, the text does not really show that (f_n) is uniformly Cauchy.

The following is Professor Frank's approach to showing that any sequence (f_n) from \mathcal{F} has a uniformly Cauchy subsequence. Since X is compact, it is separable. Let (x_j) be a dense, countable subset of X. Since $(f_k(x_1))$ is a bounded sequence of reals, a subsequence converges; call it $(f_{k^{(1)}}(x_1))$. Since $(f_{k^{(1)}}(x_2))$ is a bounded sequence of reals, a subsequence converges; call it $(f_{k^{(2)}}(x_2))$. Continue in this manner. Now, consider the diagonal sequence $(f_{k_n^{(n)}})$. Observe that $(f_{k_n^{(n)}}(x_j))$ converges for any fixed j. We claim that $(f_{k_n^{(n)}})$ is the desired Cauchy sequence in C(X). Fix $\epsilon > 0$. By the equicontinuity of \mathcal{F} , we may choose a $\delta > 0$ such that whenever $x, y \in X$ satisfy $d(x, y) < \delta$, we have $|f(x) - f(y)| < \epsilon/3$. By compactness of X, $X = \bigcup_{i=1}^m B_{\delta/2}(y_i)$ for some $y_1, \ldots, y_m \in X$. Since (x_j) is dense, there are x_{j_1}, \ldots, x_{j_m} such that $d(x_{j_i}, y_i) < \delta/2$ for $i = 1, \ldots, m$. Now let $x \in X$ and choose $i \in \{1, \ldots, m\}$ such that $x \in B_{\delta/2}(y_i)$. Note that $d(x, x_{j_i}) < \delta$, so $|f_k(x) - f_k(x_{j_i})| < \epsilon/3$ for any k. And, by construction, there exists an N not depending on x such that for all $n, n' \ge N$ and for all $i = 1, \ldots, m$, we have that $|f_{k_n^{(n)}}(x_{j_i}) - f_{k_{n'}^{(n')}}(x_{j_i})| \le \epsilon/3$. Thus, for $n, n' \ge N$, we have

$$\begin{aligned} |f_{k_{n}^{(n)}}(x) - f_{k_{n'}^{(n')}}(x)| &\leq |f_{k_{n}^{(n)}}(x) - f_{k_{n}^{(n)}}(x_{j_{i}})| \\ &+ |f_{k_{n}^{(n)}}(x_{j_{i}}) - f_{k_{n'}^{(n')}}(x_{j_{i}})| \\ &+ |f_{k_{n'}^{(n')}}(x_{j_{i}}) - f_{k_{n'}^{(n')}}(x)| \\ &\leq \varepsilon/3 + \varepsilon/3 + \varepsilon/3 \\ &= \varepsilon. \end{aligned}$$

Page 182, exercise 57: the sequence (f_n) must also be assumed uniformly bounded. If this is not done, the sequence (f_n) defined by f_n(x) = n is a counterexample. This issue is also referred to in [1].

References

 Aaron Gabriel Feldman, documenting problems reported by Caltech Professor Rupert Frank. Errata to to Real Analysis by N. L. Carothers. https://aaron.na31.org.